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DEFINITION OF SYMBOLS

Symbol Definition
R Position vector of the vehicle
R Magnitude of the position vector of the vehicle
A
R Unit velgtor in the direction of the vehicle's position vector, i.e.
R=RR
v Velocity vector of the vehicle, or the time rate of change of R .
A Acceleration vector of the vehicle; the time rate of change of V .
v Magnitude of the velocity vector
by Control variable vector defining the thrust direction
by Time rate of change of A , the control variable vector
A Magnitude of X, i.e. A=|2l
A Time rate of change of |7|
A
A Unit vector defining the direction of the thrust
A A
A Time rate of change of A
kY The control variable differential equations; time rate of change of n
X X X
R =|y}, V= y , A = y Position, velocity, and acceleration components along
’ ; any space-fixed coordinate axes, x, y, and z,
X Indicates X.for i=1, Y for i = 2, and Z for i=3.
?o Unit vector along the rotation vector of the earth i.e. along the
north polar axis of the earth
A A
¢! Latitude angle of the vehicle, i.e. sin ¢' =R * w
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DEFINITION OF SYMBOLS (CONT'D)

Definition
Oblateness coeffiéients of the accepted earth model
Gaussian gravitational constant
Equatorial radius of the earth
Potential function

= oU

The DEL operator; for example -VU = Rg = - axX. i=1, 2, 3.
i

Denote a column vector and row vec*or, respectively, i.e

B =|by and [B] = [by, by, by]

Vector cross-product of R onto V, i.e. angular momentum vector.
Vector scalar-product of R and V, i.e. R* V=R V cos (R,V).

Angle of attack measured from the velocity vector to the projection
of the thrust direction in the flight plane, positive in the direction of
motion (positive nose-down) .,

Out of plane angle of attack, measured from the projection of the
thrust vector in the flight plane to the thrust vector, positive toward
the angular momentum vector.

Time rate of change of o, and o

Vector in the direction of the perifocus and of magnitude equal to the
eccentricity of the instantaneous conic section.

Eccentricity of a conic section,

An orthogonal right-hand system of unit Vectors S being parallel to
the 1nch ing asymptote of an hyperbola, T being in the plane normal
to the S in some convenlent direction (for example in the moon's
travel plane) s and R being defined by the following vector cross pro-
duct: R S x T

vi



SOME EFFICIENT COMPUTATION TECHNIQUES INCLUDING THEIR APPLICATION
TO TIME OPTIMAL TRAJECTORIES FROM PARKING ORBIT

SUMMARY

The amount of time and effort expended in generating time optimal trajectories is
presently large and increasing daily. This emphasizes the need for efficient techniques
for computing such trajectories.

Presented in this report is the development of some efficient techniques for gen-
erating time optimal trajectories from parking orbit to desired terminal conditions. Each
technique is illustrated with a specific detailed application to the lunar-interplanetary
trajectory problem (assuming one powered phase from parking orbit to injection into the
transit conic).

The techniques developed are in the following general areas of interest: formulation
of the differential equations for the control variables; parametric representation of the
control variables, transformations relating the various parameters, and the efficient use
of these parameters; transversality conditions, with emphasis on their application to the
lunar-interplanetary cutoff surface constraints; transformation of mission objectives into
target arrival conditions that are efficient for use in multivariable isolation schemes.

Fundamental, motivating discussions are included to aid in adapting the techniques
or principles to the solution of other problems.

SECTION I. INTRODUCTION

Presented in this report are some efficient techniques for computing time optimal
trajectories from parking orbit to a target. The target is treated first as a surface or
hypersurface defined by functional terminal contraints. Later, the targeting problem is
treated where the desired terminal constraints are defined by mission objectives.

it is not the object of this report to present a theoretical calculus of variations
treatment of the problem at hand. Rather, the objective is to interpret the results of such
a treatment and to develop in detail some efficient techniques for applying the theory in
trajectory computation and analysis. This report uses the theoretical results as basis to
develop efficient techniques. *



References 1, 2, 6, and 7 present the generalized theoretical treatment of vari-
ational problems and Reference 3 presents the development for the particular problem to
be considered in this report.

It is hoped that the ideas used to develop the techniques presented here will be
adapted to other problems to save manhours and computer time, But, aside from any
other application that might be made, the application that is given in detail here - that
of generating time optimal trajectories from a parking orbit to various defined targets -
has already rendered large savings at MSFC,

SECTION II. FUNDAMENTAL INTERPRETATION OF THE PROBLEM

The basic problem to be treated in this report is the transfer of a vehicle from a
given point in three dimensional Euclidean space to some variable terminal point in that
space. The points in space are defined by so-called state variables. Thus, the initial
point is specified by six quantities defining position and velocity. The terminal point is
variable, but defined functionally in terms of vehicle position and velocity components.
The terminal functions must have certain characteristics for the theory to be applicable
[Ref. 1], but those.treated in this report have the proper character.

For this report the vehicle is assumed to have constant thrust, and constant mass
flow rate. All atmospheric forces are neglected. The earth's potential is assumed to
contain the spherical term and the second, third and fourth harmonics.

A calculus of variations treatment of the subject problem (outlined previously)
results in six so-called control variables. Fromthe homogeneity of the differential equa-
tions, it can be shown that there are really only five independent control variables. For
this problem the control variables can be physically interpreted as the thrust vector di-
rection, and the rate of change of the thrust vector direction. The calculus of variations
treatment of the problem resuits in differential equations that uniquely define the accelera-
tion of the thrust vector direction in terms of the initial conditions of the problem.

For this report the problem is resolved to the determination of initial conditions
for the control variables such that the time required to transfer the vehicle from.the
specified set of initial state variables to some desired set of terminal state variables is
a minimum. This may sound rather simple but it presently requires a large amount of

computer time.

SECTION III. EFFICIENT FORMULATION OF THE DIFFERENTIAL EQUATIONS .

The efficiency gained by the formulation of the differential equations as presented
here comes about in three ways:



i, The control variable differential equations, i.e. A, are separated into a

"dominant' part, AD, and a "minor" part, Ap;. The terms "dominant' and "minor' are

used because the customary terms such as first-order, perturbing, or second-order may
not be strictly applicable.

Normally the separation is made such that the spherical earth part is separated
from the part due to oblateness terms, but it is shown that since the gravitation accelera-

tion contains the oblateness terms, much more of the oblateness contribution to A can be
gotten at essentially no cost.

2. One of the reference vectors, c/;\.: (rotational vector of the earth), is invariant
with respect to time.

3. The formulation is applicable or usable in any spacefixed coordinate system.
This is perhaps more properly termed flexibility than efficiency.

To obtain full benefit of the formulation, the acceleration of the vehicle due to gravity,

(]

Kg or Eg’ must be properly formulated, as is shown in the following development.

A, ACCELERATION DUE TO GRAVITY
The potential function associated with the accepted earth model contains the

second, third, and fourth harmonies. It can be found in various texts in various forms.
The form used here is

-mGM JA? . H A3 5
— + 1 - e = - ] - . -
mU R E 3RZ ( 3 sin® ¢ ) 5 RE (3-5sin“¢”) sin ¢
4
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Defining U = —_RM [1 +0], then
w2 Gl GM GM 8 1
.= - =1 o + —_— = . .
Xgl vu [BXi R (1 +o0) R X, (cr)jl e; where e; indicates

a unit vector in the positive X; direction,
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The terms to be differentiated are of two basic forms, namely —I% and ¢ sin® °.
R
Applying the chain rule of _of  8q

= one finds that
X oq BXi

o [k) _ _ K| X __n Kk X
8Xi R Rn+1 R RRn R
A A
and, since sin¢”"=R-w,
Xj

9 . n ., _ hc . n~-1 I s |
CaX. (sin (b)—R sin ¢ w;-sin ¢ R .

Using these partials, then, and rearranging terms, one can write
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R - M —1—J(%) [(1-3sin?¢*) - 2sin® ¢”]

3
(%) [4 sin ¢ (3-5sin? ¢7) +3sin¢” - 15 sin® ¢° ]

R
GJ A 2 N » E é: 3 2 P o D A 4 - P
+=< - 3 (R) sin ¢~ - 5 (R) (15 sin“¢p” - 3) - 35 | R (60 sin ¢~ -

- (4) (35) sinf o) &8 |,

Al¢ .9 .4 < 4 2 A
—| [(3-30sin® ¢~ + 35sin” ¢°)+(4)7 sin*¢p~-12sin°¢" ] R

or

o ‘ 2 3
R =—%/[2— E+J (%) (1-5sin®¢”) + H (ﬁi) (3- 7sin® ¢*) sin ¢°

4 A
con [f <%—2sin2¢>‘+3sm4""ﬂ )

ACIS A, 1 (é4.,§.z,A
+124J (-1?_{) sin ¢ +3H(R) (sin® ¢ _5)+4D\R sin ¢” (7 -sin®¢”) w .



Defining the following terms,

A A
R = = , W= W (i=1, 2, 3)

X,
S
R 15

|4

S. = (1-5sin? ¢")
= (3-7sin? ¢°)
Sp = (% - 2 sin? ¢* + 3 sint ¢*
D-(7— sin® ¢ sin®* ¢7)

So.)H = (sin2 ¢o° -=)

o=

3 . .
wD = (7 - sin® ¢”)

Al? INE Al?
CR= -I—{-) ETSJ+H (ﬁ) sin ¢ SH+3D (E) SD:I,
2 . A IR
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€
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it follows that

= GM A A
Rg:- = [(1+CR) R+ C, wl.

B. THE CONTROL VARIABLE DIFFERENTIAL EQUATIONS

As was mentioned previously, a calculus of variations treatment of the
problem of interest results in a system of differential equations to be satisfied by the
control variables. These can be expressed as follows (Ref. 16):

5R 9R 5R
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Taking the partials as indicated in each term, one finds that
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9SyH 8 2 .. 1 2 . o . i
8Xi BXi (sin® ¢ 5)— R (sin ¢° w. - sin R )
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R where 64ij= 1, 0, 0 as i=1, 2, 3

There are only two more partials to be established to complete the A expression;

they are as follows:

o (X)L Yo o -

8Xi (R) "R (621 R R) ’ ‘521- 0,1, 0 as i=1, 2, 3,
9 Z i 7 Xi .

o ey =5 : = 5 .= — 2 .
0Xj (R) R (631 R R) » 053=0,0,1 as i=1, 2,3
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Now one may write 8_X£ explicitly as follows:
i

4R .. i X,
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R
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|

GM
R?
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From the above explicit form, one can generalize to A without writing all the other de-
tails. Imtroducing some new notation, one may write the following:

A _ A\l P .
Ro [10Jsin¢'-H(§) (Sy - 14 sin® ¢*) - 12D (E) (3 sin? ¢~ - 1) smqb]

A INK: )
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e R
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At this point one can see that by computing the dot product

A
(A - W)
and using the coefficients

(1+Cg) and C

from the ﬁg expression, the dominant part of the A expression can be evaluated as

cheaply as the spherical part. In Reference 3, the A expression for a spherical earth
should be given as

o GCM —~ AN A —
A = R3 [3(r- R) R-2AJ.

Defining the expression derived here to consist of a "dominant" and "minor" part indicated
by

X:XD +XM , it is seen that

'%:%{(X-ﬁ) [3 (1 +Cp) ﬁ+2cw B1- (1+cp) A}
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: L A . P A 2 . - 2 »
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= 23+6 H 2] si '-4DiA‘—22'2's
O =~ 1R sin ¢ R (2 sin” ¢~ - wD) .

SECTION IV. EFFICIENT USE OF PARAMETERS REPRESENTING THE
CONTROL VARIABLES

Assume that the basic system of equations (the mathematical representation of the
problem) is already developed in a space-fixed cartesian coordinate system. The objective
here is to determine efficient techniques for using this development rather than to in-
vestigate whether it should have been in space-fixed spherical coordinates, rotating
cartesian coordinates, etc. Many computer programs are already in use based on the
space-fixed cartesian coordinate development.

The control variables can be represented by various sets of parameters, depending
upon the reference coordinate system, the choice of variables, etc. It goes without saying
that each set of parameters has certain advantages or disadvantages for performing various
tasks, or for solving various problems.

Since the differential equations are developed in terms of _>:, X, and I , there is a

tendency to specify initial conditions in terms of the "LAMBDAS," i.e. Ay and Xo' The
transformations developed here allow the user to consider three sets of parameters
rather than just the "LAMBDAS." An analysis is included to point out advantages and
disadvantages associated with the various sets of parameters, and an efficient procedure
is given for their use in solving the two-point boundary value problem.

11




A. DISCUSSION AND ILLUSTRATION OF PARAMETERS REPRESENTING THE
CONTROL VARIABLES

Recall now that the control variables have the following physical interpretation

[Ref. 4] .
—_ A . A
A =AX : Avector of magnitude A along the thrust direction, A .
= A, A -
A =AAXxtAA : Time rate of change of A.

A
Notice in Figure 1 that the thrust direction, A, only gives two independent control
parameters. These are depicted in the figure by the angles Xp and Xy A first impression

might be that ?\ offers three independent parameters, but an exam 1nat10n of the differential
equations (Ref. 3) reveals that A has no influence on the trajectory.

Figure 1 also illustrates two ways in which one may specify initial conditions for
the control variables. One way is to specify _}\0 and 3\-0. Another is to specify Xp>

Xy,
>zp, %y A, and A.

FIGURE 1. CONTROL VARIABLES RELATIVE TO A CARTESIAN SYSTEM

12



To clarify what is meant here, consider the transformation from the control param-
eters (Xps Xy> ip, >2y’ A, A) to the control parameters (X, X) . From Figure 1 it is

seen that the unit thrust vector is expressed in terms of Xp and Xy 28

A ~-CO08 Xy sin Xp

>>
=y

= A
\Ag sin xy

Differentiating with respect to time, it follows that

LXIN
|

= cos Xy COS Xy

. sin Xy sin x, )Zy = COS Xy COS X, xp\
A . . . .
A= | -sin Xy COS X, Xy ~ cos xy sin xp Xp

cos Xy Xy
To complete the transformation, note the relationship

— A L A A
A =A A, and differentiate to get A = A A+ A A. It is seen then that the "CHIS,"

(xp, Xy » f‘p’ )Zy, A, I.X) , represent a set of control parameters, just as do the "LAMBDAS,"

(A ).
Now, getting back to a primary question: ""What are the advantages or disadvan-
tages of specifying initial values in one set of parameters rather than the other?"

One important point may be stated as follows: '"Specification of parameters ref-
erenced to an arbitrary coordinate system is likely to result in unnecessary difficulties, "

Both the "CHI" and "LLAMBDA" parameters are associated with an arbitrary coor-
dinate system. The unnecessary difficulties associated with their specification is illus-
trated in Figure 2.

Figure 2 illustrates a current problem of interest, that of leaving a circular park-
ing orbit of radius R and burning into an elliptic orbit. Assume now that the distance

from the origin to M, is equal to the distance from origin to My, and that the flight time
from injection to M, is equal to that from injection to My. This is essentially a simplifi-
cation of the lunar injection problem where M, represents the moon on one day, and M,
represents the moon on some other day.

13



FIGURE 2. CONTROL VARIABLE VECTORS FOR A PHYSICAL PROBLEM

The point to be made is that really the physical problem has not changed in the two
situations, but the control parameters shown in the figure are completely different, Fig-
ure 3 illustrates the difference, which in this simple illustration can be remedied rather
easily. Unfortunately, in most problems such difficulties waste many hours of computer

time.
y y
A A )
X o, 8
Ao (1” ey A '\zox
Xio

Azol

>
Q

FIGURE 3. COMPONENTS OF THE VARIED CONTROL VECTOR
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Now consider a set of parameters that eliminate these unnecessary difficulties.
Call this set the "ALPHA" parameters. They have a three dimensional physical basis
rather than an arbitrary coordinate system basis,

FIGURE 4. CONTROL VARIABLES RELATIVE TO A FUNDAMENTAL SYSTEM

Figure 4 illustrates the inplane significance of the "ALPHA" parameters for the
same problem as discussed previously. Notice that the "« ("' for going to M, is the same
as the "q" for going to M, (under the previous problem definition). Thus, the "ALPHA"
parameters are problem oriented. Having solved the physical problem once, the para-
meters remain unchanged regardiess of coordinatc system definition, or any other changes
that do not change the fundamental problem.

The transformations relating the "CHI", "LAMBDA'", and "ALPHA" parameters
are developed in detail in the next part of this report. The transformations are developed
in three dimensions using vector notation as defined previously.

Some experimentation has been done to determine how one may use the various
sets of parameters to his advantage. The results can be summarized as follows:

i. The "ALPHA' parameters (a,, o> Gy 5 Qys A, A) are more efficient than
either the "CHIS" or "LAMBDAS" for specifying initial conditions, as was pointed out in
the preceding figures and associated discussions. When one specifies "LAMBDAS" he is
in effect specifying direction cosines and their rate of change with respect to an arbitrarily
oriented coordinate system. This is a difficult and unnecessary task.
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2. "LAMBDA" parameters are more efficient than "ALPHAS" or ""CHIS" for use
in multivariable isolation schemes. This is easy to visualize by thinking of orbital in-
clination as a desired end-condition and an inplane alpha as a control parameter. The
influence coefficient (partial derivative) of orbital inclination with respect to an inplane

9
alpha is zero, i.e. 82 = 0 . This type of thing leads to difficulties in the use of multi-
n .
variable isolation schemes. The use of "LAMBDAS" avoids such difficulties.

In summary, "ALPHAS" are used to specify initial values for the control variables.
These initial "ALPHAS'" are then transformed to "LAMBDAS" for use in the multivariable
isolation scheme to achieve desired end conditions. The inverse transformation, i.e.
the "LAMBDA" to "ALPHA" transformation, yeilds the "ALPHAS'" associated with any
set of "LAMBDAS". These transformations allow the user to utilize the "ALPHAS" and
"LAMBDAS'" to his advantage rather than being forced to use one or the other in an un-

economical fashion.

B. TRANSFORMATIONS RELATING THE PARAMETER SETS, THE ""CHIS",
"ALPHAS", AND "LAMBDAS"

These transformations are valid with respect to any space-fixed cartesian
coordinate system. The "CHIS" carry the relationship depicted in Figure 1 with respect

to the coordinate axes. Obviously, the quantities defining position, velocity, etc. must
also be taken relative to the same coordinate system.

1. Transforming "LAMBDAS", (X, %), to "CHIS", (Xy, Xp, Xy, ip,A, and A)
A ; vector defining the direction of the thrust.
A vector defining the time derivative of the thrust direction.

A%2= A - X ; square of the magnitude of A, i.e. A= ,"Xl
A{

=N | = 7(/ A ; unit vector in the thrust direction

>

Ag
From Figure 1, one can show that

sin Xy = Ag
(equations for evaluating the angles Xy’ and Xp).

2 1
cos Xy = (A + 52 2
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I

sin X, = -A{/cos Xy
cos xp = Ay/cos Xy

Differentiating with respect to time yields

. 1

xy - A cos Xy

.1 . A Af + 25 A7
- = , }\'; ,
Xp A A2 2 AL 252

(A3 -~ A sin xy)

(Equations for computing the time rate of change of the angles Xy and Xp, once the vector

A is computed,)

A — —
To compute A from the known A and A vectors, recall that

> |
>

= A
Differentiation gives

A .
= AAXN+AAN,

> |

Since A A =A-A , the expression

A1 = s A
/}\\ = (A - A A) can be evaluated.
2. Transforming "CHIS," (Xy, Xps >Zy, >2p’ A,I.X) , to "LAMBDAS, " (A, A)
- cos Xy, sin Xp
A
A= COS Xy COS Xp . unit vector in the direction of the thrust vector.
sin Xy

- A

A=AA

; vector of magnitude A in the thrust direction

17



sin )(y sin xp Xy = cos xy cos Xp xp

- sin Xy cos Xp >2y - cos Xy sin Xp Xp

>
I

cos Xy Xy

>
]

>
>
.|.

s
>

3. Transforming "ALPHAS," (ay, @, @p, &, A, A), to "LAMBDAS," (A, A)

E, V, a represent vehicle position, velocity, and acceleration relative to the

same coordinate system in which A and A are desired.

a, Computation of some basic quantities

RE=R-R
Vi=V.V
RR =R-V

Cy= x/Rz VZ- (R 1.2) 2 . angular momentum magnitude

= R x V ; angular momentum vector

w

A =

R = R/R ; unit position vector

A —

V = V/V ; unit velocity vector

A —_

W = W/C; ; unit vector in the angular momentum direction; unit normal to the
flight plane.

A A A )

N = WXV ; auxiliary unit vector to complete the orthogonal right-hand coordi-

A A A
nate system V N W,

b. Quantities depending on the "ALPHAS"

©
1l

cos Oln cos OZW

A A A A
sin apcosay direction cosines of the A on the axes V, N, W.

ko)
1l

18



sin o

'DW= W
P, = - (pnan+pw COS O/ Q)
ﬁn = py &, - py, sin o, dy

Py, = COS Oy, Gn

A A A A
A= py V+p, N+ Py W s unit vector in the thrust direction.
— A
A = A X ; this computation is not necessary since the trajectory is unchanged
A —_
whether A or A is used.
_ F A = ) =
a = M A + R _: ; acceleration vector where Rg represents the acceleration due
to gravity.
VV=V-a

N 1 . . —_ .
Cy = . [R2(VV) -RR (R- 3)] ; time rate of change of Cy

1
A 1 — A . A A A
V = v {(a - VV) ; time rate of change of the vectors V, W, and N,
A1 — — . A
W = . [(Rxa) - Cy W]

1

4. Transforming "LAMBDAS," (A, A), to "ALPHAS," (@, Gy, &y, Gy, A, A)

Some terms defined in the previous transformation are used here without
redefining them or rewriting the equations.
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A= n .
these equations yield the two parameters A and A associated with
. . the current A and A .
AA =A° A
~
A —_
A = A/A ; unit thrust vector
_Ab
pV :_ A A
_ ')\\ ] I/\\I direction cosines of the unit thrust vector relative to the V, N,
Pn and &7 axes.
A A
Py = AW
N
sina = py

2 2
cos o= N +
w pv pn

> these equations yield the parameters o,

sina, = pn/cos @
cos o, = pv/cos ot
~

A N

—A( - )

. A A A A
p.=A*V+A"V

v

. A A A A
b= A- N+Xx- N

. A A A A
pw=7\’W+7\'W
o = Py,/ CO8S Oy

. —1— . + . .
ozn=pv(pn py, Sin oy o)

and Oye



C. APPLICATION OF THE RECOMMENDED PARAMETERS TO GENERATE TIME
OPTIMAL LUNAR TRAJECTORIES

An IBM 7094 program is in operation using these parameters as recommended
to generate time optimal lunar trajectories., To illustrate the advantages gained, consider
the program option where injection C; (twice the total energy per unit mass) is the only
terminal constraint on the trajectory burn phase from earth parking orbit to lunar transit
injection; this option uses booster liftoff time, earth parking orbit coast time, and the
burn time (equivalent to C3 at injection, Cji) as parameters to isolate three desired lunar
arrival conditions.

The recommended procedure is that the initial values for the control parameters
be given in terms of the "ALPHAS," i.e. (o, 0y, &n, &y, A, A). Now assume no in-
formation is available for specifying initial conditions for the "ALPHAS." By using the
initial values

anzaW: n=W=0
A =1
A =0

the program, using the associated "LAMBDAS, " will isolate any realistic required Cj;,
and the five associated transversality conditions. Usually eight to twenty-five powered
flight phases are required to obtain this optimum set of control parameters. Having found
the required "LAMBDAS'" to achieve the desired C;; and transversality conditions, the
associated "ALPHAS'" are carried from one trajectory to the other as launch time, coast
time, and burn time are varied to arrive at desired periselenum conditions, This means
that once the optimum set of initial "ALPHAS" are determined for the set of desired term-
inal conditions of the burn phase they are essentially invariant as launch time, coast time,
and burn time are varied to achieve desired periselenum conditions. Probably, if large
variations in burn time were required, the initial "ALPHAS" would have to be determined
again to stay within some preset tolerance of the exact optimum values.

The procedures discussed here are valid regardless of the orientation of the
cartesian coordinate system being used, or the position of the moon in its orbit. They
hold for the variations normally made in launch time, coast time, and burn time to arrive
at desired periselenum conditions, with only one search to determine optimum initial
values for the "ALPHAS." This is possible by specifying initial values for the shaping
parameters in terms of the "ALPHAS" and utilizing the transformations that relate the
"ALPHAS" and "LAMBDAS, "
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D. CONCLUSIONS AS TO PARAMETERS REPRESENTING THE CONTROL
VARIABLES

There is a best set of parameters for analyzing a given prohlem. To some
extent it is uneconomical to analyze in terms of any parameters other than that best set.
Determining the best set may be practically impossible, but efforts to that end are nor-
mally worthwhile,

For the problem treated in this report, experience has shown the "ALPHA" param-
eters to be better for specifying initial conditions for the control variables, The
"LAMBDA" parameters are better for performing multivariable isolations to determine
initial values for the control variables that produce the trajectory to desired terminal
conditions. Hence, the transformations relating these parameters allow the user to take
advantage of these properties. This was pointed out in the application of the techniques
to generate time optimal lunar trajectories,

A survey of the various physical problems can be conducted using a simplified
model to determine approximate initial values for the "ALPHAS. " When the survey is
completed, the resulting data can be represented functionally by using curve-fitting tech-
niques. These functions can therefore be built into appropriate computer programs. This
should relieve the user of the task of trying to guess what initial values of the control
parameters are required for various vehicles to leave various parking orbits and burn
into various terminal conic sections.

SECTION V. TERMINAL CONSTRAINTS AND TRANSVERSALITY CONDITIONS

The following development is applicable to problems having fixed initial state
conditions but functionally variable terminal state conditions. The object is to transfer
the vehicle from the initial state conditions to the desired terminal state conditions in a
minimum time. This is accomplished by finally determing initial conditions for the con-
trol variables such that the terminal constraints are satisfied in the time optimal fashion.

It is possible to grasp and use the methods for solving this problem without going
through the theoretical development of the methods [References 1, 2, 6, and 7, present
the theoretical development]. The objective here is to present the methods in an under-
standable form, to develop a generalized set of transversality conditions for a particularly
useful class of constraints, and to present in detail one application for the generalized
transversality conditions. The constraints necessary to generate time optimal lunar or
interplanetary trajectories from a parking orbit (assuming one burn phase from orbit to
injection) are of the acceptable class, hence, these are used in the detailed application

just mentioned.
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A. FUNDAMENTAL DISCUSSION OF TRANSVERSALITY CONDITIONS

References 1, 2, 6, and 7 all give rules in one form or another such that for
the problem at hand one can show that

i oF. . i oF,
A, = - P —J-. and A, = P —il
i

=1 J 0X; i =1 J axi

are relationships that must be satisfied at the terminal state surface (hypersurface) along
the time optimal trajectory. The terms in these expressions are defined as follows:

Fj (ji=1, ..., J): Desired terminal state conditions represented in functional form.

Thus, the number of constraints, J, represents the dimension of the terminal curve, sur-
face, or hypersurface. The number of terminal constraints can be any number from one
to six for the problem at hand (since there are six independent control parameters).

Xi’ ).(i (i=1, 2, 3): The six state variables for this problem.

7\1, 5\1 (i=1, 2, 3): The six control variables for this problem (these can be reduced

to five independent parameters but a cutoff parameter is added to give six independent
control parameters),

Pj (j=1, ..., d): Undetermined auxiliary constants that are eliminated in solving

for the transversality conditions.

The number of terminal constraints, J, and the number of control parameters
determine the number of transversality conditions to be derived from these auxiliary re-
lationships, Aj and 7\1 This problem has five independent control parameters and a cutoff
criteria to be used as control parameters, hence, there can be no more than six inde-
pendent relationships enforced at the terminal (cutoff) surface.

To visualize what the transversality conditions accomplish, consider the problem
where only one terminal constraint is to be satisfied. Since the constraints (for this
problem) are independent of the control variables, there is (theoretically) a six param-
eter family of solutions. It is an enormous task to locate the time optimal solution from
this family by surveying trajectories. But the transversality conditions furnish auxiliary
boundary conditions that make this task reaéonable, although it still requires a lot of
computer time. Thus, for one terminal constraint, five associated transversality con-
ditions are derived. When the constraint and the five associated transversality conditions

are satisfied simultaneously at cutoff, all the parameters of the problem will have been
utilized, and one is assured that the corresponding trajectory is the desired time optimal
one.
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To illustrate how transversality conditions can be derived, consider J = 1, Thus,
F, is the only terminal constraint, and it follows that

oF oF

1 4 1

817‘1 5\ o F,

Ay = = Py 5y e =P 55
aFi . 8F1

A= - P gy A= P1gy

Any one of the six relationships can be solved for P; to eliminate that auxiliary quantity,
and the results substituted into the other five expressions to yield the five desired trans-
versality conditions. For example,

oF, oFy o Fy oFy o Fy
Pi:'}‘ia—i’ Ay = Ay "é"y— B—kor }\28_5( =}\1—8—y— , ete.

so that the five transversality conditions can be written as

S 3 F,
Gi= %5y ~ MGy T
8 F, o F,
G:=%s 5% -~ Mgy T
. OF, 9F;
G4—?\2-5X— + 7\1 oy =0
g 8F1 8F1
Gs=% 517 + M3, ~ 0O
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At this point, then, the problem is reduced to that of isolating a cutoff time, and initial
values for the five independent control parameters such that the constraint (F,) and the
five associated transversality conditions (Gy,...Gs) are satisfied at cutoff,

As more constraints are added, the algebra becomes more burdensome, but the
procedure is basically unchanged. Thus, for two constraints, F; and Fy, two of the six
relationships will be used to eliminate P;'and P,, resulting in the four required trans-

versality conditions. As more constraints are added, the basic procedures remain the
same,

One should note that constraints can be imposed such that there is no way possible
for the system to generate a solution trajectory.

B. GENERALIZED TRANSVERSALITIES FOR A PARTICULAR CLASS OF
CONSTRAINTS

The relationships

J J
9 Fy . O F;
Moo L By emd A=) Py
]=1 1 J=1 1

represent, in a sense, the most general expression for transversality conditions asso-
ciated with the problem-at hand. The object now is to specialize this expression somewhat
to arrive at an expression for a set of transversality conditions which circumvents most

of the work described above for a particularly useful, frequently occurring, class of con-
straints.

This particular class of constraints is characterized as follows:

i) J = 3, i.e. there are three functional terminal constraints, F;, Fy, and F3. This
results in three auxiliary constants P;, P,, and Pj.

ii) The partials of the constraints with respect to the state variables, X; and ).(i

(i=1, 2, 3), must be representable in vector form. In the subsequent development the
following notation is used:

F1 _ o F, _ o F, _
< = o, < = B’ < = v
axi Bxi axi
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and

Using some new notation the 2; and 5\1 relationships can be rewritten using vector
and matrix notation as

8F, 0F, 8F,

M 9 X 9% 9 X Py

- 5 | — 9 F, 9 F, 8 F,4
-A = —— P = A = - - . P
(Bxi) 2 9y oy 9y 2

9F 9 F, 9F
\)\3 = : 3 P,

oz oz 0z
\ 9F, 08F, 0F;\ .
1 o x 0x 0X 1
A= P = A = p
(axi) 2 oy oy oy 2

. oF, 9 F, o Fy
As \az 9z 9z Ps

0 X X5

(assuming the determinant of (———) does not vanish)

0 X4
— -1 LR
: 8Xi

-1
Now, letting (i) denote the inverse of the matrix (_8_) , it follows that
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and

— 9 9 -1 -

Substituting the notations for the partials into this expression and denoting the matrices
in a different fashion yields
— — e — ™ .
—A=(OZ,B,'Y) (a,b,C) A
_ o _1
Working through the details to determine (a, b, ¢) explicitly reveals that the matrix
of cofactors can be written as three vector crossproducts put into row form, namely

[ x ¢l - _
[c xal] , and that the determinant of (a, b, c) is given by the scalar quantity
[a x bl

b (cxa).

It follows that

_ _ [bxell .
-{b-(cxa)} A= (a,B,y) |[lcxa]]| A.
[@ x D]

Expanding the right side and rearranging terms leads to the following very convenient
form for expressing the particular desired transversality conditions:

{;A - (bxc) o+ {.X' (c x 2)} E+{'X- @xB)}y+{b- (Exm}Ar=0

This means that this generalized form (applicable to the particular class of con-
straints) can be programed and when the user formulates the constraints F;, F,, F3, and

the partials denoted by «, B, ¥, a, b, and ¢, he is ready to generate the associated time
optimal trajectory (the partials expressions are peculiar to the constraints, so they must
be programed with each set of acceptable constraints).

To appreciate how much effort this form for the transversality conditions can save
on the part of the engineer, it is sufficient to work through the application (given in the
next part of this report) without using the above form. Also, the programming time and

computing time is less using the generalized form than it is using the form gotten by per-
forming the indicated operations and reducing to primitive terms.
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C. FUNDAMENTAL DISCUSSION OF EARTH-TARGET FUNCTIONAL CUTOFF
SURFACES

Before getting into the particular application of the generalized set of trans-
versality conditions, a fundamental discussion is presented on earth-to-target functional
constraints. The groundwork leading up to a formulation of '"Lunar or Interplanetary
Cutoff Surfaces' is presented in Reference 8. The actual formulation of the ""Lunar

Cutoff Surface' is given in Reference 5.

The essential features of such cutoff surfaces are presented here without delving
too deeply into the developmental details.

For any earth-target geometry (any instant in time) a three dimensional volume
of geocentric conics exists for travel to that target. The perigee positions of these conics
lie on a cone, having its vertex at the earth's center, and each perigee vector of the
volume of conics being an element of the cone. The geometry and the desired mission
profile which is characterized by vehicle parameters, trajectory shaping, and mission
objectives all contribute to the determination of this cone of perigee vector locations and
the sizing criteria for the associated conics. The axis of the cone is essentially opposite
the vector from earth to target, and is denoted by the unit vector 1<>I The radius of the
cone, or half-cone angle, o, and the conic sizing criteria, C; (twice the total energy per
unit mass), are essentially dependent on the parking orbit, the earth-target distance,
and the desired flight time to the target. Having made these decisions, in other words
having specified these parameters, the elements defining the cone can be treated as con-

A
stants. Thus, the desired M, o, and Cj can be treated as known quantities, denoted by
M*, ¢*, and C¥.

Now it doesn't really matter that trajectories computed on a realistic trajectory
model result in perigee vectors that aren't on a cone for the full three dimensional volume,.
Feasibility dictates that a relatively small part of the cone is considered for each launch
opportunity. Reference 5 shows the applicability of the lunar cutoff surface as described
for realistic flight simulations.

D. APPLICATION OF THE PARTICULAR GENERALIZED TRANSVERSALITY
CONDITIONS TO THE LUNAR-INTERPLANETARY CUTOFF SURFACE

For a fixed profile there are three constraints to be satisfied at cutoff if a
lunar or interplanetary mission is to be fulfilled. These constraints are as follows:

1. Fy = Vi 22— C;k = 0 : The injection conic sizing criteria.

2. F,=M «S-ecosd =0 : Alignment criteria for placing the major axis
of the conic as desired.
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3. F3=M - (RxV) =0 : Flight plane alignment criteria. This forc,e'\s the
flight plane at cutoff to contain the vector M*,

One should note here that no constraint is present to choose which perigee vector
will result, but the constraints do force the perigee vector to be one of those making up
the cone., Furthermore, there is no criteria forcing the vehicle to inject at a particular
true anomaly, or angular momentum. This is, in fact, the task that the transversality
conditions perform, namely, insuring that the vehicle travels the best possible (time
optimal) trajectory from the given initial state variables to a set of terminal state vari-
ables lying on the Tunctional terminal cutoff surface.

Having formulated the constraints Fy, Fy, and F3, the next task is the formulation
of the partials

8 F, OF,
— j= i= 2 .
5 %y and o%; as (j=1,2, 3 and (i=1, 2, 3)

In the constraints listed, S denotes a vector in the perigee direction of the cutoff
conic,and e the eccentricity of that conic. Minovitch shows in Reference 9 that

§= -1 Vx ®xV)- R
S GMVX( X V) -
Rewriting this gives § = —— [V2R - RRV] -E or
g this &1 ~ aMm R °’

5.1 2  GM| = S
S—GM[(V—R)R RRV].

From various places [Ref. 15] one can find that

1
e=(1- g)z where p is the semilatus rectum, and "a" is the semi-major axis,

This can be rewritten as

1
.S [REVE - RPR) Y
€= GM GM
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1

1 2

oM? [C3(R2 v? - R?RY) ]

e =<1 +

Now the partials expressions can be developed as follows:

1
F; = X2 +§52+ 2% - 2GM (x?+y? + 29?2

ok, - 2% ox; MR

A . P te ke P b 3
Fy= M*:-8S-ecoso* = M 8§ + M5 Sy + My S3 - ecos 0"

o Fy A 98, - 08, M 953 . oe
—— =M, —— + My —— +My; — - o
9 X, LI X; 2 3 X5 5 5 X; COS 9 5 Xi
9 F . O8S AT . 084 3

2 - My i S MY —— + M¥ — - cos o* 22
0 Xy 0 X o Xj 9 Xj 0 Xi

The intermediate partials expressions can be developed as follows:

r 1
i 9 29 ., 2 9 ) 2_7-| 1 . . .o
Si= oM lj( +y 4+ 2z2°- GM (x" +y“+ 2z JXi—w[(xx+yy+zz) Xi]
6851 1 c . .
8—5(=G_M{2XX1—XX1_RR6H} where 6;;=1, 0, 0, as i=1, 2, 3.
i
9S; 1 . . .
5% - oM L2V X -V Xi-RR Oy} where 65i=0, 1, 0, as i=1, 2, 3.
i
883 i . . .
ﬁzG—M{uxi-in-RRaﬁ} where 63;=0, 0, 1, as i=1, 2, 3
i

054 1 GM . s GM
ox; CGM ) B FXi XXt (VTR O
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asz 1 GM . *
. R’ Y Xi-y X+ 521

9x;y GM
% ] Fonoe (Vz

1 1
e = [1+Eﬁ2{03[(x2+y2+z2) (3<2+$’2+'22)-(Xk+yy+z.z)2]}]2
g—;i=2Le a{_/[_z[z_g (R* V2 - R*R% +C,; (2R®X —ZRRXil

! 1 . 2 > .
:—e— EI\F [Xl (R VZ-R2R2+R2 C3)—C3RRX]]

i . . .
3%, e GM? [(R?V? - R*R? + R* Cy) X;j-C3RRX;]

de = i 1 803 R2V2 sz{z +C 2V2X . .
3Xi 2 e GM2 axi ( - ) 3 ( i‘ZRRXi)

Jde i 1 GM 9 <9 929 5 . .

= 74 _ . _
B x; e GMZ2 [Rs (REV®-R*R) X; +C3 (VX -RRX)
de _ 1 GM 9 9 9 29 0 ..
9x; e GM? I:Rs (R®VS-R°R) +C3V*| X;-C3RRX,

31



Substituting these into the appropriate place yields

o F
2 1 3 . . - " . . .
5% = o [Mf (2xX; -%X;-RR §j) +M§ (2yX; ~§X;-RR )
i
* S X, s cos o* . . .
+My (2z2X;-2X;-RRoy)] - e—GM-Z—[(R"’VZ—RZR2+R203) X; - C3 RRX;]

0F, 1 % | GM o« o s G ) = | GM .
-a-;i'—-cm M, [R—3 XXi—XXi+ (V —'—Il\{/l) 61| +Mp R yXi_yXi+
2_GM [ GM o s g 2_GM
K
COosS @ GM 9 o 9 . .

3 . e . . 3 . - A>'—
F3=M1:< (yz-2Y¥) +M’2"< (zk-x2) +M; (xy-yX%X) = M" - (RxV)

o Fyg A, —
— = (M* x R),

0 X. 1
1

0F; _ $><M"<

ax = ( )i

Now all the partials expressions are established and by eliminating the "i" subscript in
favor of vector notation (thus, X; =R as i=1, 2, 3) and rearranging terms, these
partials can be written in the required vector form. It follows then that

8F,

8xi

o = =2V
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- ) 2 1 - A o 'A>',<
B === {Z(M*-R)V—(M *V) R-RRM

axi GM

ﬂ(RZ . — ‘A
_°°S‘(’}M [(V2+C3-R2)V-C3RR]}

_ 9Fj 1/\\/1* —
_ _9F 2GM A
Bo ot L LGM B AR e e ) o (veo SM i

9 x GM | R R

8 Fy

= A
5%, = (VX M*)

C =

All the information is now available to evaluate the transversality conditions that
were developed previously. These were given in the form

{7\ (b x ¢)} E+{:}: . (EXE)}E+{;: c(@axm)}y+{b- (cxa)} r=0

The operations indicated here have been performed and reduced to the most primi-
tive terms, but it really doesn't seem useful to include them since it is more economical
to program and compute the above form than the primitive form. Furthermore, the work
involved in getting to the primitive form is a burdensome exercise.

These results are now in use at MSFC. A program generates the surface criteria,
i.e, it determines M*, cos ¢, and C5 from trajectories that satisfy mission objectives
at the target, It then uses these quantities in the cutoff surface constraints and trans-
versality equations to generate optimum trajectories from perturbed initial conditions or
vehicle characteristics,
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SECTION VI. EFFICIENT TARGETING TECHNIQUES FOR COMPUTING
TRAJECTORIES THAT SATISFY MISSION OBJECTIVES

This report, up to this point, has dealt with techniques for terminal constraints in
well defined, explicit form. In this part the primary objective is to present efficient
techniques for treating terminal constraints that are no more explicit than a mission ob-
jective, For example, it is shown how to efficiently represent the periselenum arrival
constraints for a trajectory from geocentric parking orbit that passes over a specified
lunar location,

The techniques used are made possible by transforming mission objective state-
ments into efficient isolation parameters [Ref. 10], and allowing these desired "efficient
parameters" to become slowly varying or floating end conditions. In the following de-
velopment this is referred to as a ""floating end-point" concept. These techniques are
employed to generate trajectories from which functional cutoff criteria, such as the cut-
off surface quantities M*, cos ¢®, and Cg" (that were used previously in this report), are

2
derived.

A, FUNDAMENTATL DISCUSSION OF THE TRAJECTORY TARGETING OR
ISOLATION PROBLEM

The current procedure for isolating or targeting trajectories that satisfy de-
sired terminal conditions is called 2 multivariable isolation technique or routine, To
illustrate what the routine is capable of performing and the basic assumptions involved
in its development, the presentation usually proceeds as follows:

Let
6 represent the set of Q control parameters

f represent a set of fk end conditions.

The trajectory isolation problem, then, is the determination of (_Q— that yields the

desired values for f, A Taylor series for some fi element of f is of the form
_ o f; 9 fj
= 1! - ..+ |— - +
fi fi (Qg) + 5Q, . (Q - Q) *+... 5Qy . (Q Qko)

azfi azfi_
1 1 _ 2 — _ 2
i [(8Q12)0 W Bl e (an)o ™ %) +] o

[y
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Now using matrix and vector notations, this may be rewritten for all elements of f as

f =T (Q) * (850, AT+ (8%, AQ? +...,

where
—
(o1, af, 51,
8Q1 an [ N ..an
2 =
800 = | ot o) = [ TRt
(ijo an a ® o9 0000800 3 ijo B_Q—-f j=1’- .,k
J Jo
B.fk 8fk
in ........... . an
| 10

etc. At this point a critical assumption is made: '"The series may be truncated after the
first partials terms.'" Hence,

f=f(Q) + (3 4 (Q- Q)

results. This is the basic equation associated with the so-called multivariable isolation
schenfe, Defining the following terms, let 60 represent the set of "best-guess" values

for the control parameters, f (60) = ?0 the associated end conditions, f* the desired

end conditions, and Q* the control parameters that result in £ , then

% T
f —f "'(81])0

( - 60)
results., Let (Q* - QO) , the change needed to go from the 60 to Q*, be AQ, then

-1 -

AQ = (8, (£% - fy)

results. (f* —71‘0) is known after the best-guess trajectory is computed, The matrix
(9..) o is determined numerically by generating trajectories having discrete, independent
1
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variations made in the elements of 60. In other words,

ETQugs vov s (Q +0Q0) s -oo, Q]

is established by computing a trajectory. This yields

Bfi o ‘. or of :f(Qio,...,Qj0+6on,...,Qko)—fg
9 QOJ H ’ ’ ’ aQOJ 5 QOJ
One sees, then, that as j goes from j=1, ..., k, the complete (aij)0 matrix can be

numerically approximated, and the equation

-1 _ _

AQ = (355, (I* -1

can be evaluated to yield AQ. Now, basically, the trouble with this procedure lies in the
truncation of the series past the linear terms. This means that (1) The '"best-guess"
must be very close to the desired Q* such that the higher order terms (truncated terms)
are insignificant, or (2) The parameters being used must in reality be near linear such
that the higher order terms-are insignificant. Generally speaking neither (1) nor (2) is
true, and a great amount of work and computer time is wasted until finally (1) is fulfilled
and a solution is found for Q* to give f *.

B. PARAMETERS WITH LINEAR FEATURES

In Reference 10, Mr. W. Kizner of JPL presents two parameters, B- % and
B- 'R, that are very efficient for isolating desired arrival conditions on lunar or inter-
planetary trajectories in terms of various departure parameters. References 10 and 12
discuss these parameters in some detail; it is to be pointed out here that these parameters
are more linear relative to variations in departure conditions than any others that the
author knows about. As was pointed out previously, this linearity feature is of tremendous
importance in performing the trajectory isolation problem economically.

— A — A
The advantages gained by the use of these parameters (B - T and B - R)in solving
the trajectory isolation problem are the basis for the transformations to follow. Here

— A - A
some frequent mission constraints are transformed into B - T and B - R. By doing this,
one can talk about missions in the accepted language, and even feed these into the com-

—_ — A
puter program, but have these transformed into B - T and B * R to keep the advantages
that these parameters afford.
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C. CONCEPT OF FLOATING END-CONDITIONS

In order to illustrate a basic difficulty involved in the use of B - ’,I\‘ and B * i'\{,
and how the difficulty can be eliminated, a typical example is treated in detail. Suppose
one wishes to survey various types of trajectories constrained as follows: All must arrive
at a '"specified periselenum radius" - REA’ at a "specified inclination to the ST plane" -

I"S"T, and have a "specified flight time from injection to periselenum" - T”F‘, . It is known
that
igl =.b = '\/RL' Zla] + Rn~pa), and B % = bcos I
= NRgp (21 cA): ST
— A .
B - R = -b sin Igy.

This implies then that to specify B- ’/1\‘ and B - ﬁ exactly one must know |a.i » absolute
value of the semi-major axis of the arrival conic, exactly. It is true that |a| varies
slowly for small variations in initial conditions but it varies more than enough to cause
trouble. In practice, to get TRCA - R’EA < ~1.0 (km) one must get on and off the com~
puter two or three times, each time specifying the B . 'i‘\ and B¥ - % more accurately as
the estimate gets better for la*l . Getting around this difficulty gave rise to the concept
of '"floating end-point isolation.'" This corll\cept is useful in isolating other difficult combi-

nations of end-conditions in terms of B - T and B- R.

x &
ca 2rd Ign

to the desired accuracy, consider the possibility of having the program compute these
quantities after it generates the best-guess trajectory and establishes the best-guess |a .
In other words, the program has a much better estimate of the la] needed than the user
can get without considerable previous work having been done on similar trajectories.
Using Ial from the initial trajectory, the specified R* and I, the program can com-

— A —_ A
Since one cannot specify B - T and B * R that result in the desired R

CA’ ST’
pute
"™ o —_— A E .
ol * * *k . = i
b chA (2 fa| +RE,), and B* * T =Db" cos Ig,
B* . g = -b* sin I¥ .
ST

Any time thereafter, as the isolation proceeds, when the program gets a new "better-

— A — A
guess" trajectory, it recomputes B* + T and B* . R. Now, what does this mean in the
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fundamental operation of establishing

-1 __ —
AQ = (835) (f* - f,) ?

This actually allows £* to become a slowly varying function, rather than fixing it as best
one could, which was not good enough. Letting F* represent the exact, fixed value that

is unknown but desired, then £* = F* + 6f, where 6f changes in value, and
—_ -1 — I —
AQ = (3;) (F* +3f - 1)

results. This could actually converge more rapidly than the fixed end-condition isolation,
i.e., (F* - FO) could be greater than [-F_* + ((E - f )] and the difference be harder to
eliminate (possibly). The idea is that since the program must find AQ anyway, then
most llkely it is as easy to find the exact desired AQ (F"< +8f - fo)as it would be to find
AQ (f —fo) And, since one must go on the computer again and again to refine AQ (f* -fo)
to finally approach AQ ( - fo) , the floating end-condition isolation looks very favorable.

Here is what is involved in solving the problem usmg fixed end-condition isolations.

Notice that Ia"‘l is required to specify B* - T and BY - R and (generally speaking) one
does not know la*l with sufficient accuracy before running very similar traJectomes So,
one makes the best guess that he can for [a | (call it ay) , computes (B * T) 1, and

(B R) 1> and goes on the computer. When the isolation is completed, experience shows
that RCA will differ.from RCA by 10, 20, or perhgps 100 (km) due to the guess for la*' .

One must go on the machine at least once more with a new estimate of fa*l to refine the
results so that 'RCA - RzAl takes on a sufficiently small value to suit one's purposes.

How does the floating end-condition isolation help in this problem? The idea is to
let the program use the 'a, that it gets on the ""best-guess' trajectory rather than tfrying
to input one. Then as the isolation progresses and "better' trajectories are generated,
discard the old , , and update (B T) and (B R) using , , from these ”better" tra-
jectories. Thus, when the floating end-condition is finally isolated, 'RC A C A is
within whatever tolerance the user has specified - no more refinements are needed. The
user has not been bothered trying to estimate what ia*l should have been as when using
fixed end-condition isolations.

In actual practice, experience has shown that the floating end-condition for lunar
flight studies takes no more trajectories per case to isolate than a fixed end-condition
isolation. It has made the work much easier, faster, and saved a considerable amount of
manhours and computer time for the type problem just discussed.
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D. TRANSFORMING CONSTRAINTS INTO THE LINEAR PARAMETERS

— A — A
Using the parameters B - T and B + R, and the concept of floating end-condi-
tions, various constraints are transformed into an efficient system for computations.
These transformations are presented in detail.
. % — 7% - i
1. Arrival at Periselenum with RCA RCA’ IST IST T TF
This particular set of constraints was discussed in the previous example. As
is shown in References 10 and 11,

=~ R¥ (2|a +R%,) and _B*'/'B:b* cos I¥
CA CA’”’ ST
— A
B'l R — _b—p I:,
sin ST

Thus the constraints are represented in the most nearly linear parameters that are
available, except for flight time, TF‘ Flight time is still a nonlinear function of varia-

tions in initial conditions. JPL has done some research [12] on a linearized flight time
parameter, but no implementation has been done here in this area.

2. Arrival on Orbits Inclined at a Minimum to Some Reference Plane

A
The latitude or declination of S relative to some plane is the value of the
minimum orbital inclination that can be established relative to that same plane. Consider
the lunar equator as the basic reference plane to which minimum orbital inclination is
desired. The principles carry over identically to any other reference plane, Transforma-
IN
tions are defined [Ref. 13] and are available for eftablishing S in selenographic coordi-
%3 0)« This then

means that arrival in the selenographic referenced S T plane is, in fact, arrival in the
orbit plane inclined at a minimum to the lunar-equator. Thus,

nates. Define T in the lunar equator, normal to S, as T .= (Sy, -S
A

r‘

AA
RgA, ;“T = 0° (arrives in the ST plane, 'direct" motion along orbit)
Specify:{
* * . - AA . .
RCA’ I = 180° (arrives in the ST plane, "rectrograde' motion along orbit)
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E. CIRCUMLUNAR FREE RETURN PROFILES

This implies that the outbound transit is designed such that the vehicle can
travel from injection, pass near the moon on the side away from the earth, and continue
to satisfactory earth reentry with no postinjection thrust applications. Other reasonable
constraints are often superimposed upon this basic profile.

The sensitivity of earth reentry conditions to launch or injection conditions is well
known for circumlunar trajectories. The concept here is to isolate conditions at peri-
selenum that are known to be near free return conditions. The procedures for refining
these to result in acceptable reentry conditions is not given since these refinements
represent very small changes in the departure parameters.

Now, how are free return periselenum conditions formulated? Miele [Ref. 14]
shows that (in the restricted three-body problem) any trajectory arriving with peri-
selenum on the earth-moon line is symmetric with respect to the earth-moon line. Also,
any trajectory having periselenum in the xz plane of the classical restricted three-body
problem (plane containing the earth, moon, and the pole of their motion about the bary-
center, at any time) with a 90° or 270° azimuth is symmetric with respect to the xz
plane. In other words, if periselenum is on the earth-moon line, the velocity may have
any local azimuth direction and still retain the outbound-to-inbound symmetry about the
earth-moon line. However, if periselenum moves away from the earth-moon line but
stays in the xz plane of the restricted three-body problem (analogous to moving in latitude
referenced to the travel plane of the moon), then the velocity must have a local azimuth
direction (relative to the pole of the moon's motion about the earth) of 90° or 270° to
keep the outbound-to-inbound symmetry with respect to the xz plane. Better criteria
exists for approximating free return arrival periselenum conditions but this will suffice

to illustrate how the transformation can be used.

Notice that free returns having periselenum on the earth-moon line represent a
subset of the more general problem in which the periselenum location is specified arbi-
trarily. The other type of free return is likewise a subset of the more general problem
in which periselenum location and the azimuth direction are specified arbitrarily. Trans-
formations are developed for the more general problems of which the free returns are

particular situations.

F. TRANSFORMING CONSTRAINTS THAT HAVE CIRCUMLUNAR FREE
RETURNS AS PARTICULAR SITUATIONS

In all of these transformations assume that the vehicle must be constrained to
circumnavigate the moon and pass at a specified close approach distance. In the notation

to be used here, this means that RCA must be forced to a specified desired value, R’C:;A.
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L

)

1. Arrival at a Desired Periselenum Position (RéA’ qb* , A

Free returns having periselenum on the earth-moon line are a particular
family out of this class of trajectories.

The JPL space program [Ref. 15] has the direction /(\)f the moon from the earth
available in various coordinate systems; call this direction E ( ¢g» Ag). The conditions
to be imposed then are denoted by

. o )
p* = \/RéA (2 Jo| +R%,)
~
'13* =E.

A
Using a common coordinate system throughout, and treating S as a slowly varying function,
the unit normal to the desired flight plane is given by

A A
S

— A
N = 8x E , where S denotes the direction of the incoming asymptote,

and

>

—_— i
N* = N/(N% + N2 + N2)2
X y Z

The desired direction of the impact parameter [Ref. 10] is given by
A Age A
B* = N*x§
; Tk % Ax . .
and finally B* = b™ « B" from which two desired parameters are computed,

A —~ A
(B* « T) and (B* - R).

A
These parameters orient the flight plane as desired but P* is not yet forced to the de-
sired location in that plane. This is accomplished by enforcing

A A A A
1-(P*¥.P)=0 or 1-(P-E) =0,

—x A
From t}\le fundamental principles [Ref. 11} it is known that these constraints, ( B* - T),
(B* * R), and (1 - (P« E) = 0), can be satisfied with variations in
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Ty, (booster lift-off time)
AT, (coast time in earth parking orbit)

ATB (time of lunar transit injection burn from the earth parking orbit) .

2. Arrival at a Desired Periselenum Position (RéA’ ¢*, A*) with a Desired

Velocity Direction (Z*)

For free returns of this type the periselenum must occur in the xz plane of the
restricted three-body problem with a velocity heading normal to that plane.

The coordinate system for this transformation is selenocentric and can be oriented
arbitrarily so long as periselenum position and velocity, and the earth's position and
velocity relative to the moon are known in the same system. Assume that periselenum
position, 7, and velocity, §, moon's position, R,,, and velocity, Ry, are known in the
same geocentric space-fixed coordinate system, then

R, = P - R, ‘gives selenocentric periselenum position,

and

—\75 = 5 - _ﬁm gives selenocentric periselenum velocity.
The normal to the plane of the moon's motion about the earth is given by _N-m
.= — A A A A A
Normalize Rm’ and Nm , establishing R | and Nm; then Em = Nm x R, and Rm » Eys

A A A
and Nm is an orthogonal, right-handed system of unit vectors. The Ry, N,, plane is
analogous to the xz plane of the restricted three-body problem,

A A A —
The JPL program has an option allowing S, T, R, and B to be referenced to the

A

A A .
Rm , E and Nm system, This option should be used for the type problem being con-

m ’
sidered.

For this problem transform the desired conditions into the desired B relative to

A A A .
the Rm, Em, Nm system, Define
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o>
>
<>
>

S m S m

S ST S B R

pm - s m ’ pm - s m ’
A A A A
Rs NIn VS N

thus, Em and Bm denote the vehicle's selenocentric position and velocity, respectively,

A A A
relative to the system of unit vectors Rm , Em , Nm at periselenum arrival time. Letting

2 2
+
Pmz ’\/me pm
sin 6 = - s cos 6 = — —— Y
,\/~2 B 2 2 ,\/ 2 2 2
+ + + +
pmx pmy pmz Pmx pmy Pmz
. pmy pmx
sin ¢ = — s cos o =
NPT NS
pmx pmy me p1’ny
then
cos b cos a* - sin 6 cos o cos=Z* - sin a* sin =*
A . ;\ . . o .
pm = cos 6 sin a* , pm = - sin & sin a* cos Z* + cos @ sin =%
sin & cos 6 cos =%

represent periselenum position and velocity in terms of the desired quantities o* and =¥ s
a* and =* being specified, Some free returns, as was pointed out, are just a subclass
of this general formulation where a* = 0, and £* = 270°. Notice now that <§\is still a free
parameter. The objective is to choose 6 such that the flight plane contains S .
. ) . . A A A
The first task is to determine & such that the flight plane, Pm Pm>s contains S.,.
This means that 6 must be chosen such that

§ =B xp ,anaR -8 =0
Nm—pmxpm, an Nm~ m = Y
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These operations yield

(— —
- sin o* cos =* + sin 6 cos a* sin =*

A
N = cos a* cos =% + gin 6 sin a* sin =¥

- cos 6 sin =*

and
4 A ; b * in o Qi *
NIn . Sm =0 =siné= (S, cos @ +Sysmoz ) —cos 6 8 sin =
+ cos =¥ (8y cos a* - 8, sin a*),
Letting
P = SX cos a* + Sy sina* and M = Sy cos a* - 8y sin a*
A A . .
and solving the Nm . Sm = 0 equation for sin 6 one gets

1
-cos Z* . P+ M-S _[sin?=* (P?+8?) - cos =* M2)7

sin 6% = .
sin =% (P? + S;)

This shows that = * of 0° and 7 give trouble; so, for present purposes these are arbi-

trarily ruled out. By definition, - Eﬂ- =6 S% so that

!
cos 8% = (1 - sin? 6™)7

Finally, using the desired declination, 5% , one can compute

A, A, A
B* = N* x8
m m°~ m
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A .
The vector B;‘n orients the flight plane as desired relative to the moon's travel plane.

Now the periselenum position vector, fo\m, must be moved to the desired position, 3;;
This implies that

A

— A -
The conditions (B* - T), (B* - ﬁ) , and [1 - (/;3;] ©Py) = 0], can be satisfied with

variations in TL (booster lift-off time) , ATC (coast time in the geocentric parking orbit) ,
and ATB' (burn time of the lunar transit injection stage) , but variations in TF (flight

time from lunar transit injection to periselenum) must be acceptable.

3. Arrival at a Desired Periselenum Position and Passing Over Another
Specific Site

As was true in the previous developments for free return profiles, the trans-
formation developed here treats a general problem of which the free return profile is a
particular case.

In this problem two positions are specified on the arrival orbit, thus, uniquely
specifyingAthe desired orbit projection on the lunar surface. The problem now is to
move the S, incoming asymptote, such that it is brought into the desired orbit plane.
This cannot be done, in general, with small variations in initial conditions. Let

— —
cos d)’; cos oz;

A

P* = |cos qb% sin oe"f,

: %
L sin ¢)P
denote the desired periselenum direction, and

e —m

cos ¢f cos of

R¥* = | cos ¢% sin of

sin qb’*l‘ J
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denote the other desired position on the orbit, then

- A A
N = R* x P*

and
1

A — 9
W _ 2 2 2
N —N/(NX+ Ny'l'NZ)
*

A A, A,
is completely specified. If S is to be made to lie in the P~* R;" plane, the relationship

m>

N*-S=o0

A
must be satisfied. Furthermore, if S keeps the unit magnitude then

A A
s. s =1

must hold.

A
Now, what reasonable procedures move S such that these two relationships are

satisfied?

It /i\s knovy\n from experience/\[Ref. 11] that TFAvax;{ations represent one means of
bringing S into S* , i.e., causing S to move into the P* Ri" plane, there being denoted as

A
S*. This procedure may or may not be expensive. For example if a relatively short
flight time is required, then the injection energy requirements go up accordingly.

A A s«
Using T, variations to bring about S = S* implies that SZ ~ 8, , hence assume
s, =5;. Then

1
S>,'< = + (1 _ S*Z _ S’:‘ 2) 2 and N* S* + N* S* + N’k S* =0
X z y X X y Oy z z

can be used to determine Si and S;," . This results in

1

- NFON® 8F & NFO(N*? o4 NFZ o gy

g* - y z 'z X X y z "
y N>}<2 + N*z
X y
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and
i
sk %*2 2,2
= { - - S%
S + ( SZ S*)

Choosing the ﬁm, %m’ IQIm reference system, analogous to the x, y, z axes (respectively) ,
circumlunar flights result always in SX > @0 These equations, as usual, are not com-
pletely general. It is evident that (sz + N;z = 0) cannot be permitted. This means

that the two specified points on the desired orbit must not both be in the travel plane of

the moon.

A* Ay A>‘<
To complete the development, T~ and R™ follow from 8™,

A A A S -
% _ N * %k * *
B¥ = N*.x 8%, b® = NR{, (2 |a] +R;

— . A
o) » and B¥ = b’ B™ ,

— A A
from which (B¥ - T) and (B™ - R) can be computed.

A A
Another means for forcing S into S* is by making powered plane changes. Need-

less to say, such maneuvers can be prohib/i\tively expeniive. One easy way to formtll\late

this procedure is to take the projection of S in the p* R:" plane as the direction of S*.
This means that

— A A A A

S* = 8- (8- N*¥) N*

1

S* = §%/(8%2 +8%2 4 g¥2
X y z

and

A A, A
B* = N*x g%

A A A
The unit vectors T and R follow from S*, and

1
b* = [R5, (2 || +RE,)1?

—_ A _— A
from which (B* - T) and (B* - R) follow immediately.
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The remaining condition

A A
1-(P- P =0

A
forces the periselenum vector to the desired position, P*,

SECTION VII, CONCLUSIONS AND RECOMMENDATIONS

The development presented in this report is in four general areas, as is pointed
out in the abstract. Conclusions and recommendations relative to each general area are

listed as follows:
1. Differential Equations of the Control Variables

If earth oblateness terms are included in the acceleration of the vehicle due
to gravity, then the primary influence of the oblateness terms on the control variables
should be included. Essentially no extra computing time is required due to including the
dominant part of the oblateness influence rather than just the spherical earth influence

(see pages 16 and 17).
2. Parametric Representation of the Control Variables

Detailed transformations are given relating three parameter sets for repre-
senting the control variables. These parameter sets are referred to as the "ALPHAS,"

(ozn,.aw, o'zn, dw, A, A), the "CHIS," (xp, Xyrs >2p, >2y, A, A), and the " LAMBDAS, "
(X, A). These are simply three distinct sets of quantities defining the thrust vector, and
its time rate of change. The transformations relating these parameters allow the user

to take advantage of the facility either set might afford for performing a particular task.

It is shown that '"control variable initial conditions' should be given in terms of
the "ALPHAS. " However, the isolation of '""control variable initial conditions' that result
in trajectories to desired terminal conditions (using a multivariable isolation scheme)
should be done in terms of the "LAMBDAS." By utilizing the transformations relating the
"ALPHAS" and "LAMBDAS" one can specify the initial conditions efficiently as "ALPHAS,"
transform to "LAMBDAS, " and perform the isolation efficiently in terms of the'LAMBDAS. "

It is recommended that a survey be conducted using a simplified physical model
to determine initial "ALPHAS" required for various vehicles to leave various parking
orbits and burn into various desiredterminal conic sections. The resulting data should
be represented functionally using curve-fitting techniques. These functions can then be
used in more refined programs, thereby relieving the engineer of the task of estimating
"econtrol variable initial conditions," eliminating some duplication of effort since many
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engineers do this task independently at many different places, and saving a sizable amount
of computer time that is usually wasted due to poor estimates of the ""control variable

initial conditions, "

3. Transversality Conditions and Lunar—lnterplanetary Mission Cutoff Surfaces

The fundamental nature of transversality conditions and cutoff surfaces is
discussed, and a detailed application of these concepts to lunar-interplanetary flights is

given, .

The lunar-interplanetary cutoff surface constraints belong to a class of terminal
constraints characterized as follows:

i) There are three functional terminal constraints; call them F;, Fy, and Fj.

. ii) The partials of these constraints with respect to the state variables Xj and
X; (1= 1, 2, 3) can be represented in vector form. For the present development the

notation is introduced such that as (i=1, 2, 3),

_ 9F, —_ @F
ARt AR A
i i 9 Xj
oF, _ ©®F, _ ©8Fy _
X, "% 3x, Prgx, ¢

It is shown that for this class of terminal constraints, the transversality condition
may be written as

- bxo))a+{x- E-D)E+{r- @xD)) y+{b- GxDIA=0,

where X, and A represent the control variables for this problem. It is more economical
to compute the transversality conditions in this form than it is to reduce this expression

to so-called primitive terms.

4, Isolating or Targeting Trajectories that Satisfy Mission Objectives

Parameters that are used to define mission objectives are not normally ef-
ficient for use in isolation or targeting routines. Hence, procedures are given for
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transforming mission parameters into efficient isolation parameters. All the parameters
treated in this report involve what is called a "'floating end-point concept.' This simply
means that the desired terminal values of the efficient isolation parameters have some
variation as initial conditions are varied, but experience has shown that this variation
presents no problem. On the other hand, introduction of this '"floating end-condition
concept' results in significant savings in man-hours and computer time when isolating
earth departure conditions that result in trajectories that fulfill lunar or interplanetary
mission objectives.
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